• Em Destaque

    Aqui Você Encontra Os Melhores Template da Internet .

  • Em Destaque

    Aqui Você Encontra Os Melhores Template da Internet .

  • Em Destaque

    Aqui Você Encontra Os Melhores Template da Internet .

  • Em Destaque

    Aqui Você Encontra Os Melhores Template da Internet .

  • Curte aí!

    Thursday, 23 February 2012

    The Flowchart of Wet Processing of Synthetic Goods
    (For Dyeing)
     
    Grey Cloth


    Stitching
    Washing
    Dyeing
    Heat Setting
    Calendaring
    Folding
    Packing

     
    (For Printing)

    Grey Cloth


    Stitching
    Washing
    Drying
    Stentering
    Printing
    Curing or Polymerizing
    Washing
    Calendering

    The Flowchart of Wet Processing of Synthetic Fabrics/Manmade Goods

    Posted at  21:02  |  in  regular  |  Continue lendo ...»

    The Flowchart of Wet Processing of Synthetic Goods
    (For Dyeing)
     
    Grey Cloth


    Stitching
    Washing
    Dyeing
    Heat Setting
    Calendaring
    Folding
    Packing

     
    (For Printing)

    Grey Cloth


    Stitching
    Washing
    Drying
    Stentering
    Printing
    Curing or Polymerizing
    Washing
    Calendering

    The Flowchart of Wet Processing of Cotton Goods

    Grey Cloth

    Stitching and Sewing

    Shearing and Seropping

    Brushing

    Singeing

    Desizing

    Scouring

    Bleaching

    Souring

    Washing

    Drying

    Mercerizing

    Printing

    Fixing/Curing

    After Treatment

    Finishing

    Inspection

    Packing

    Baling

    The Flowchart of Wet Processing of Cotton Goods/Cotton Fabric

    Posted at  20:07  |  in  regular  |  Continue lendo ...»

    The Flowchart of Wet Processing of Cotton Goods

    Grey Cloth

    Stitching and Sewing

    Shearing and Seropping

    Brushing

    Singeing

    Desizing

    Scouring

    Bleaching

    Souring

    Washing

    Drying

    Mercerizing

    Printing

    Fixing/Curing

    After Treatment

    Finishing

    Inspection

    Packing

    Baling

    Most synthetic and cellulosic manufactured fibers are created by “extrusion” — forcing a thick, viscous liquid (about the consistency of cold honey) through the tiny holes of a device called a spinneret to form continuous filaments of semi-solid polymer.

    In their initial state, the fiber-forming polymers are solids and therefore must be first converted into a fluid state for extrusion.

    This is usually achieved by melting, if the polymers are thermoplastic synthetics (i.e., they soften and melt when heated), or by dissolving them in a suitable solvent if they are non-thermoplastic cellulosics. If they cannot be dissolved or melted directly, they must be chemically treated to form soluble or thermoplastic derivatives. Recent technologies have been developed for some specialty fibers made of polymers that do not melt, dissolve, or form appropriate derivatives. For these materials, the small fluid molecules are mixed and reacted to form the otherwise intractable polymers during the extrusion process.

    The Spinneret 
    The spinnerets used in the production of most manufactured fibers are similar, in principle, to a bathroom shower head. A spinneret may have from one to several hundred holes. The tiny openings are very sensitive to impurities and corrosion. The liquid feeding them must be carefully filtered (not an easy task with very viscous materials) and, in some cases, the spinneret must be made from very expensive, corrosion-resistant metals. Maintenance is also critical, and spinnerets must be removed and cleaned on a regular basis to prevent clogging.

    As the filaments emerge from the holes in the spinneret, the liquid polymer is converted first to a rubbery state and then solidified. This process of extrusion and solidification of endless filaments is called spinning, not to be confused with the textile operation of the same name, where short pieces of staple fiber are twisted into yarn. There are four methods of spinning filaments of manufactured fibers: wet, dry, melt, and gel spinning.

    Wet Spinning 
    Wet spinning is the oldest process. It is used for fiber-forming substances that have been dissolved in a solvent. The spinnerets are submerged in a chemical bath and as the filaments emerge they precipitate from solution and solidify.

    Because the solution is extruded directly into the precipitating liquid, this process for making fibers is called wet spinning. Acrylic, rayon, aramid, modacrylic and spandex can be produced by this process.

    Dry Spinning 
    Dry spinning is also used for fiber-forming substances in solution. However, instead of precipitating the polymer by dilution or chemical reaction, solidification is achieved by evaporating the solvent in a stream of air or inert gas.

    The filaments do not come in contact with a precipitating liquid, eliminating the need for drying and easing solvent recovery. This process may be used for the production of acetate, triacetate, acrylic, modacrylic, PBI, spandex, and vinyon.

    Melt Spinning
    In melt spinning, the fiber-forming substance is melted for extrusion through the spinneret and then directly solidified by cooling. Nylon, olefin, polyester, saran and sulfar are produced in this manner.


    Melt spun fibers can be extruded from the spinneret in different cross-sectional shapes (round, trilobal, pentagonal, octagonal, and others). Trilobal-shaped fibers reflect more light and give an attractive sparkle to textiles.

    Pentagonal-shaped and hollow fibers, when used in carpet, show less soil and dirt. Octagonal-shaped fibers offer glitter-free effects. Hollow fibers trap air, creating insulation and provide loft characteristics equal to, or better than, down.

    Detailed production flowcharts:
         Acrylic    Nylon (Polyamide)    Polyester

    Gel Spinning
    Gel spinning is a special process used to obtain high strength or other special fiber properties. The polymer is not in a true liquid state during extrusion. Not completely separated, as they would be in a true solution, the polymer chains are bound together at various points in liquid crystal form. This produces strong inter-chain forces in the resulting filaments that can significantly increase the tensile strength of the fibers. In addition, the liquid crystals are aligned along the fiber axis by the shear forces during extrusion. The filaments emerge with an unusually high degree of orientation relative to each other, further enhancing strength. The process can also be described as dry-wet spinning, since the filaments first pass through air and then are cooled further in a liquid bath. Some high-strength polyethylene and aramid fibers are produced by gel spinning.

    Stretching and Orientation
    While extruded fibers are solidifying, or in some cases even after they have hardened, the filaments may be drawn to impart strength. Drawing pulls the molecular chains together and orients them along the fiber axis, creating a considerably stronger yarn.

    Introduction of Synthetic Fiber | Production Process of DifferentSynthetic Fibers

    Posted at  00:46  |  in  regular  |  Continue lendo ...»

    Most synthetic and cellulosic manufactured fibers are created by “extrusion” — forcing a thick, viscous liquid (about the consistency of cold honey) through the tiny holes of a device called a spinneret to form continuous filaments of semi-solid polymer.

    In their initial state, the fiber-forming polymers are solids and therefore must be first converted into a fluid state for extrusion.

    This is usually achieved by melting, if the polymers are thermoplastic synthetics (i.e., they soften and melt when heated), or by dissolving them in a suitable solvent if they are non-thermoplastic cellulosics. If they cannot be dissolved or melted directly, they must be chemically treated to form soluble or thermoplastic derivatives. Recent technologies have been developed for some specialty fibers made of polymers that do not melt, dissolve, or form appropriate derivatives. For these materials, the small fluid molecules are mixed and reacted to form the otherwise intractable polymers during the extrusion process.

    The Spinneret 
    The spinnerets used in the production of most manufactured fibers are similar, in principle, to a bathroom shower head. A spinneret may have from one to several hundred holes. The tiny openings are very sensitive to impurities and corrosion. The liquid feeding them must be carefully filtered (not an easy task with very viscous materials) and, in some cases, the spinneret must be made from very expensive, corrosion-resistant metals. Maintenance is also critical, and spinnerets must be removed and cleaned on a regular basis to prevent clogging.

    As the filaments emerge from the holes in the spinneret, the liquid polymer is converted first to a rubbery state and then solidified. This process of extrusion and solidification of endless filaments is called spinning, not to be confused with the textile operation of the same name, where short pieces of staple fiber are twisted into yarn. There are four methods of spinning filaments of manufactured fibers: wet, dry, melt, and gel spinning.

    Wet Spinning 
    Wet spinning is the oldest process. It is used for fiber-forming substances that have been dissolved in a solvent. The spinnerets are submerged in a chemical bath and as the filaments emerge they precipitate from solution and solidify.

    Because the solution is extruded directly into the precipitating liquid, this process for making fibers is called wet spinning. Acrylic, rayon, aramid, modacrylic and spandex can be produced by this process.

    Dry Spinning 
    Dry spinning is also used for fiber-forming substances in solution. However, instead of precipitating the polymer by dilution or chemical reaction, solidification is achieved by evaporating the solvent in a stream of air or inert gas.

    The filaments do not come in contact with a precipitating liquid, eliminating the need for drying and easing solvent recovery. This process may be used for the production of acetate, triacetate, acrylic, modacrylic, PBI, spandex, and vinyon.

    Melt Spinning
    In melt spinning, the fiber-forming substance is melted for extrusion through the spinneret and then directly solidified by cooling. Nylon, olefin, polyester, saran and sulfar are produced in this manner.


    Melt spun fibers can be extruded from the spinneret in different cross-sectional shapes (round, trilobal, pentagonal, octagonal, and others). Trilobal-shaped fibers reflect more light and give an attractive sparkle to textiles.

    Pentagonal-shaped and hollow fibers, when used in carpet, show less soil and dirt. Octagonal-shaped fibers offer glitter-free effects. Hollow fibers trap air, creating insulation and provide loft characteristics equal to, or better than, down.

    Detailed production flowcharts:
         Acrylic    Nylon (Polyamide)    Polyester

    Gel Spinning
    Gel spinning is a special process used to obtain high strength or other special fiber properties. The polymer is not in a true liquid state during extrusion. Not completely separated, as they would be in a true solution, the polymer chains are bound together at various points in liquid crystal form. This produces strong inter-chain forces in the resulting filaments that can significantly increase the tensile strength of the fibers. In addition, the liquid crystals are aligned along the fiber axis by the shear forces during extrusion. The filaments emerge with an unusually high degree of orientation relative to each other, further enhancing strength. The process can also be described as dry-wet spinning, since the filaments first pass through air and then are cooled further in a liquid bath. Some high-strength polyethylene and aramid fibers are produced by gel spinning.

    Stretching and Orientation
    While extruded fibers are solidifying, or in some cases even after they have hardened, the filaments may be drawn to impart strength. Drawing pulls the molecular chains together and orients them along the fiber axis, creating a considerably stronger yarn.

    Air Permeability
    The air permeability of a fabric is a measure of how well it allows the passage of air through it. The ease or otherwise of passage of air is of importance for a number of fabric end uses such as industrial filters, tents, sailcloths, parachutes, raincoat materials, shirtings, downproof fabrics and airbags.

    Air permeability is defined as the volume of air in millilitres which is passed in one second through 10Os mm2 of the fabric at a pressure difference of 10mm head of water.


    In the British Standard test the airflow through a given area of fabric is measured at a constant pressure drop across the fabric of 10mm head of water. The specimen is clamped over the air inlet of the apparatus with the use of rubber gaskets and air is sucked through it by means of a pump as shown in Fig.A. The air valve is adjusted to give a pressure drop across the fabric of 10mm head of water and the air flow is then measured using a flow meter.


    Five specimens are used each with a test area of 508mm2 (25.4mm diameter) and the mean air flow in ml per second is calculated from the five results. From this the air permeability can be calculated in ml per 100mm2 per second.

    The reciprocal of air permeability, air resistance, can be defined as the time in seconds for ImI of air to pass through 100s mm2 of fabric under a pressure head of 10mm of water. The advantage of using air resistance instead of air permeability to characterize a fabric is that in an assembly of a number of fabrics, the total air resistance is then the sum of the individual air resistances. 
     
    Fig(A) : The air permeability test
    To obtain accurate results in the test, edge leakage around the specimen has to be prevented by using a guard ring or similar device (for example, efficient clamping). The pressure drop across the guard ring is measured by a separate pressure gauge. Air that is drawn through the guard ring does not pass through the flowmeter. The pressure drops across the guard ring and test area are equalised in order that no air can pass either way through the edge of the specimen. A guard ring of three times the size of the test area is considered sufficient.

    What is Air Permeability | Air Permeability Test

    Posted at  00:26  |  in  TTQC  |  Continue lendo ...»

    Air Permeability
    The air permeability of a fabric is a measure of how well it allows the passage of air through it. The ease or otherwise of passage of air is of importance for a number of fabric end uses such as industrial filters, tents, sailcloths, parachutes, raincoat materials, shirtings, downproof fabrics and airbags.

    Air permeability is defined as the volume of air in millilitres which is passed in one second through 10Os mm2 of the fabric at a pressure difference of 10mm head of water.


    In the British Standard test the airflow through a given area of fabric is measured at a constant pressure drop across the fabric of 10mm head of water. The specimen is clamped over the air inlet of the apparatus with the use of rubber gaskets and air is sucked through it by means of a pump as shown in Fig.A. The air valve is adjusted to give a pressure drop across the fabric of 10mm head of water and the air flow is then measured using a flow meter.


    Five specimens are used each with a test area of 508mm2 (25.4mm diameter) and the mean air flow in ml per second is calculated from the five results. From this the air permeability can be calculated in ml per 100mm2 per second.

    The reciprocal of air permeability, air resistance, can be defined as the time in seconds for ImI of air to pass through 100s mm2 of fabric under a pressure head of 10mm of water. The advantage of using air resistance instead of air permeability to characterize a fabric is that in an assembly of a number of fabrics, the total air resistance is then the sum of the individual air resistances. 
     
    Fig(A) : The air permeability test
    To obtain accurate results in the test, edge leakage around the specimen has to be prevented by using a guard ring or similar device (for example, efficient clamping). The pressure drop across the guard ring is measured by a separate pressure gauge. Air that is drawn through the guard ring does not pass through the flowmeter. The pressure drops across the guard ring and test area are equalised in order that no air can pass either way through the edge of the specimen. A guard ring of three times the size of the test area is considered sufficient.

    Super Ofertas

    --
    Copyright © 2013 fibres2fashion. Blogger Template by BloggerTheme9
    Proudly Powered by Blogger.
    back to top